Publications
2019
Evolution of interlayer and intralayer magnetism in three atomically thin chromium trihalides. Proc Natl Acad Sci U S A 116, 11131-11136 (2019).
DOI: 10.1073/pnas.1902100116
Nonlinear anomalous Hall effect in few-layer WTe. Nat Mater 18, 324-328 (2019). .
DOI: 10.1038/s41563-019-0294-7
2018
Opportunities and challenges of interlayer exciton control and manipulation. Nat Nanotechnol 13, 974-976 (2018).
DOI: 10.1038/s41565-018-0301-1
Controlling magnetism in 2D CrI by electrostatic doping. Nat Nanotechnol 13, 549-553 (2018).
DOI: 10.1038/s41565-018-0135-x
An unusual continuous paramagnetic-limited superconducting phase transition in 2D NbSe . Nat Mater 17, 504-508 (2018).
DOI: 10.1038/s41563-018-0061-1
Valley-Selective Exciton Bistability in a Suspended Monolayer Semiconductor. Nano Lett 18, 3213-3220 (2018). .
DOI: 10.1021/acs.nanolett.8b00987
Mirrors made of a single atomic layer. Nature 556, 177-178 (2018).
DOI: 10.1038/d41586-018-04089-1
Electric-field switching of two-dimensional van der Waals magnets. Nat Mater 17, 406-410 (2018). .
DOI: 10.1038/s41563-018-0040-6
Strongly Interaction-Enhanced Valley Magnetic Response in Monolayer WSe_{2}. Phys Rev Lett 120, 066402 (2018).
DOI: 10.1103/PhysRevLett.120.066402
Electrical Tuning of Interlayer Exciton Gases in WSe Bilayers. Nano Lett 18, 137-143 (2018).
DOI: 10.1021/acs.nanolett.7b03667
2017
Nanomaterials: 2D materials for silicon photonics. Nat Nanotechnol 12, 1121-1122 (2017). .
DOI: 10.1038/nnano.2017.230
Valley magnetoelectricity in single-layer MoS. Nat Mater 16, 887-891 (2017).
DOI: 10.1038/nmat4931
Probing the Spin-Polarized Electronic Band Structure in Monolayer Transition Metal Dichalcogenides by Optical Spectroscopy. Nano Lett 17, 740-746 (2017).
DOI: 10.1021/acs.nanolett.6b03855
Valley- and spin-polarized Landau levels in monolayer WSe. Nat Nanotechnol 12, 144-149 (2017). .
DOI: 10.1038/nnano.2016.213
2016
Gate Tuning of Electronic Phase Transitions in Two-Dimensional NbSe_{2}. Phys Rev Lett 117, 106801 (2016). .
DOI: 10.1103/PhysRevLett.117.106801
Electrical control of the valley Hall effect in bilayer MoS2 transistors. Nat Nanotechnol 11, 421-5 (2016).
DOI: 10.1038/nnano.2015.337
2015
High-mobility three-atom-thick semiconducting films with wafer-scale homogeneity. Nature 520, 656-60 (2015).
DOI: 10.1038/nature14417
Breaking of valley degeneracy by magnetic field in monolayer MoSe2. Phys Rev Lett 114, 037401 (2015).
DOI: 10.1103/PhysRevLett.114.037401
Strongly enhanced charge-density-wave order in monolayer NbSe2. Nat Nanotechnol 10, 765-9 (2015).
DOI: 10.1038/nnano.2015.143
Effect of Surface States on Terahertz Emission from the Bi2Se3 Surface. Sci Rep 5, 10308 (2015).
DOI: 10.1038/srep10308
2014
Possible topological superconducting phases of MoS2. Phys Rev Lett 113, 097001 (2014).
DOI: 10.1103/PhysRevLett.113.097001
Tightly bound excitons in monolayer WSe(2). Phys Rev Lett 113, 026803 (2014).
DOI: 10.1103/PhysRevLett.113.026803
2013
Controlling the spontaneous emission rate of monolayer MoS in a photonic crystal nanocavity. Appl Phys Lett 103, 181119 (2013).
DOI: 10.1063/1.4826679
Real-time observation of interlayer vibrations in bilayer and few-layer graphene. Nano Lett 13, 4620-3 (2013).
DOI: 10.1021/nl401713h
Probing symmetry properties of few-layer MoS2 and h-BN by optical second-harmonic generation. Nano Lett 13, 3329-33 (2013).
DOI: 10.1021/nl401561r
Experimental demonstration of continuous electronic structure tuning via strain in atomically thin MoS2. Nano Lett 13, 2931-6 (2013).
DOI: 10.1021/nl4013166
High-contrast electrooptic modulation of a photonic crystal nanocavity by electrical gating of graphene. Nano Lett 13, 691-6 (2013).
DOI: 10.1021/nl304357u
Tightly bound trions in monolayer MoS2. Nat Mater 12, 207-11 (2013).
DOI: 10.1038/nmat3505
2012
Strong enhancement of light-matter interaction in graphene coupled to a photonic crystal nanocavity. Nano Lett 12, 5626-31 (2012).
DOI: 10.1021/nl302746n
Control of valley polarization in monolayer MoS2 by optical helicity. Nat Nanotechnol 7, 494-8 (2012).
DOI: 10.1038/nnano.2012.96
Structure-dependent Fano resonances in the infrared spectra of phonons in few-layer graphene. Phys Rev Lett 108, 156801 (2012).
DOI: 10.1103/PhysRevLett.108.156801
2011
Seeing many-body effects in single- and few-layer graphene: observation of two-dimensional saddle-point excitons. Phys Rev Lett 106, 046401 (2011).
DOI: 10.1103/PhysRevLett.106.046401
2010
Electron and optical phonon temperatures in electrically biased graphene. Phys Rev Lett 104, 227401 (2010).
DOI: 10.1103/PhysRevLett.104.227401
The evolution of electronic structure in few-layer graphene revealed by optical spectroscopy. Proc Natl Acad Sci U S A 107, 14999-5004 (2010).
DOI: 10.1073/pnas.1004595107
Electronic structure of few-layer graphene: experimental demonstration of strong dependence on stacking sequence. Phys Rev Lett 104, 176404 (2010).
DOI: 10.1103/PhysRevLett.104.176404
Atomically thin MoS₂: a new direct-gap semiconductor. Phys Rev Lett 105, 136805 (2010).
DOI: 10.1103/PhysRevLett.105.136805
Ultrafast photoluminescence from graphene. Phys Rev Lett 105, 127404 (2010).
DOI: 10.1103/PhysRevLett.105.127404
2009
Ultraflat graphene. Nature 462, 339-41 (2009).
DOI: 10.1038/nature08569
Observation of an electric-field-induced band gap in bilayer graphene by infrared spectroscopy. Phys Rev Lett 102, 256405 (2009).
DOI: 10.1103/PhysRevLett.102.256405
2008
Measurement of the optical conductivity of graphene. Phys Rev Lett 101, 196405 (2008).
DOI: 10.1103/PhysRevLett.101.196405