Skip to content Skip to navigation

High-contrast electrooptic modulation of a photonic crystal nanocavity by electrical gating of graphene.

TitleHigh-contrast electrooptic modulation of a photonic crystal nanocavity by electrical gating of graphene.
Publication TypeJournal Article
Year of Publication2013
AuthorsGan, X, Shiue, R-J, Gao, Y, Mak, KFai, Yao, X, Li, L, Szep, A, Walker, D, Hone, J, Heinz, TF, Englund, D
JournalNano Lett
Volume13
Issue2
Pagination691-6
Date Published2013 Feb 13
ISSN1530-6992
Abstract

We demonstrate high-contrast electro-optic modulation of a photonic crystal nanocavity integrated with an electrically gated monolayer graphene. A silicon air-slot nanocavity provides strong overlap between the resonant optical field and graphene. Tuning the Fermi energy of the graphene layer to 0.85 eV enables strong control of its optical conductivity at telecom wavelengths, which allows modulation of cavity reflection in excess of 10 dB for a swing voltage of only 1.5 V. The cavity resonance at 1570 nm is found to undergo a shift in wavelength of nearly 2 nm, together with a 3-fold increase in quality factor. These observations enable a cavity-enhanced determination of graphene's complex optical sheet conductivity at different doping levels. Our simple device demonstrates the feasibility of high-contrast, low-power, and frequency-selective electro-optic modulators in graphene-integrated silicon photonic integrated circuits.

DOI10.1021/nl304357u
Alternate JournalNano Lett.
PubMed ID23327445